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LEARNING OBJECTIVES

The student is able to …

CVE.U2.E9.PC1 The student is able to define a feature.

CVE.U2.E9.PC2 The student knows the different types of image features.

CVE.U2.E9.PC3 The student is able to define feature detection and matching and understand their purposes.

CVE.U2.E9.PC4 The student knows some commonly used feature detectors and their classification.
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FEATURE

A feature can be definied as a piece of information about the content of an image, usually about

whether a certain region of the image has certain properties. This can be specific structures in the

image such as points, edges or objects.

Image registration need to get correspondence between images.

Basic idea:

• detect feature points, called keypoints

• match feature points in different images

Want feature points to be detected consistently and matched correctly.
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DIFFERENT TYPES OF IMAGE FEATURES

Features available:

• Harris corner

• Tomasi’s “good features to track”

• SIFT: Scale Invariant Feature Transform

• SURF: Speeded Up Robust Feature

• GLOH: Gradient Location and Orientation Histogram

• etc.
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HARRIS CORNER

A shifted corner make some difference in the image.

A shifted uniform region make no difference.

So, look for large difference in shifted image.

Δx
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HARRIS CORNER

Suppose an image patch W at x is shifted by a small amount ∆x. The sum-squared difference at x is:

That is,

This is called the auto-correlation function.

Apply Taylor’s series expansion to I(xi + ∆x):

Where ∇I = (Ix, Iy)
T

(1)

(2)

(3)

(4)

(5)
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HARRIS CORNER

Replacing Eq. 5 into Eq. 1, the output is

Where the auto-correlation matrix A is given by:

(6)

(7)

(8)

(9)
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HARRIS CORNER

A captures intensity pattern in W.

Two manners to define corners:

(1) Large response The locations x with R(x) greater than certain threshold.

(2) Local maximum The locations x where R(x) are greater than those of their neighbors, i.e., apply non-

maximum suppression.

Response R(x) of Harris corner detector is given by:

(10)
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HARRIS CORNER

Sample result (large response):

Many corners are detected.
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TOMASI'S GOOD FEATURE

Shi and Tomasi considered weighted auto-correlation:

Where w(xi) is the weight. 

Then, A becomes

(11)

(12)
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TOMASI'S GOOD FEATURE

A is a 2×2 matrix. This means there exist scalar values λ1, λ2 and vectors v1, v2 like that

• vi are the orthonormal eigenvectors,

(13)

(14)

λi are the eigenvalues; expect λi ≥ 0.
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TOMASI'S GOOD FEATURE

1. If both λi are small, then feature does not vary much in any direction. ⇒ uniform region (bad feature).

2. If the larger eigenvalue λ1 ≫ λ2, then the feature varies mainly in the direction of v1. ⇒ edge

(bad feature).

3. If both eigenvalues are large, then the feature varies significantly in both directions. ⇒ corner or

corner-like (good feature).

4. In practice, I has a maximum value (e.g., 255). So, λ1, λ2 also have an upper bound. Then, only have

to check that min(λ1, λ2) is large enough.



13

TOMASI'S GOOD FEATURE

Sample results (large maximum):

Detected corners are more spread out with non-maximum suppression.
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COMPARISON

• Tomasi’s good feature uses smallest eigenvalue min(λ1, λ2).

• Harris corner uses det A − α(tr A) 2 = λ1λ2 − α(λ1 + λ2) 
2 .

• Brown et al. use the harmonic mean

(15)
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SUBPIXEL CORNER LOCATION

• Locations are detected keypoints are usually at integer coordinates.

• To gain more accurate real-number coordinates, need to run subpixel algorithm.

• General idea: starting with an approximate location of a corner, find the accurate location which

lies at the intersections of edges.
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ADAPTIVE NON-MAXIMAL SUPPRESSION

• Non-maximal suppression: look for local 

maximal as keypoints.

• Can lead to uneven distribution of detected

keypoints.

• Brown et al. used adaptive non-maximal 

suppression:

• local maximal

• response value is significantly larger

than those of its neighbors

Strongest 250 Strongest 500

ANMS 250, r = 24 ANMS 500, r = 16
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FEATURE MATCHING

Measure difference as Euclidean distance between feature vectors:

(23)

Some possible matching strategies:

• Return all feature vectors with d smaller than a threshold.

• Nearest neighbor: feature vector with smallest d.

• Nearest neighbor distance ratio:

(24)

d1, d2: distances to the nearest and 2nd nearest neighbors.

Nearest neighbor is a good match, if NNDR is small.
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SCALE INVARIANCE

The scale of the object of interest may vary in different images.

Inefficient solution:

• Extract features at many different scales.

• Combine them to the object’s known features at a particular scale.

Efficient solution:

• Extract features that are invariant to scale.
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SIFT

Scale Invariant Feature Transform (SIFT).

Convolve input image I with Gaussian G of various scale σ:

This produces L at different scales.

To detect stable keypoint, convolve image I with difference of Gaussian:

(16)

Where,

(17)

(18)
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SIFT

• Have 3 different scales within each octave

(doubling of σ).

• To produce D, successive DOG images are 

subtracted.

• D images in a lower octave are downsampled

by factor of 2.
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SIFT

Find local maximum and minimum of D(x, y, σ):

• Compare a sample point with its 8 neighbors in the same scale and 9 neighbors in the scale above

and below.

• Choose it if it is larger or smaller than all neighbors.

• Get position x, y and scale σ of keypoint.

Orientation of keypoint:

(19)

Gradient magnitude of keypoint:

(20)
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SIFT

Keypoints found may contain edge points.

Edge points are not good since different edge points along an edge may look the same.

To discard edge points, form the Hessian H for each keypoint

(21)

and discard those for which

(22)
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BETTER INVARIANCE

Rotation invariance

• Find dominant orientation of keypoint.

• Normalize orientation.

Affine invariance

• Adjust ellipse to auto-correlation function or Hessian.

• Apply PCA to determine principal axes.

• Normalize according to principal axes.



24

FEATURE DESCRIPTORS

Why need feature descriptors?

• Keypoints provide just the positions of strong features.

• To combine them across different images, have to describe them by extracting feature descriptors.

Type of feature descriptors:

• Able to match corresponding points across images accurately.

• Invariant to scale, orientation, or even affine transformation.

• Invariant to lighting difference.
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FEATURE DESCRIPTORS

• Take 16x16 square window around detected interest point

• Coordinates and gradient orientations are measured relative to keypoint orientation to achieve orientation

invariance. 

• Weighted by Gaussian window.

• Collect into 4×4 orientation histograms with 8 orientation bins. Create histogram of surviving edge orientations.

Image gradients Keypoints descriptor
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FEATURE DESCRIPTORS

• Bin value = sum of gradient magnitudes near that orientation.

• 16 cells * 8 orientations = 128 dimensional descriptor.

• Normalize feature vector to unit length to lower the effect of linear illumination change.

• To lower the effect of nonlinear illumination change, threshold feature values to 0.2 and renormalize feature

vector to unit length.
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OTHERS FEATURE DESCRIPTORS

Alternatives of SIFT:

• PCA-SIFT - Use PCA to lower the

dimensionality.

• SURF (Speeded Up Robust Features) - Use 

box filter to approximate derivatives.

• GLOH (Gradient Location-Orientation

Histogram) - Use log-polar binning structure.

GLOH performs the best, followed by SIFT.
Image gradients Keypoints descriptor
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OTHERS FEATURE DESCRIPTORS

Sample detected SURF keypoints (without non-maximal suppression):

Low threshold provides many cluttered keypoints. Higher threshold provides fewer keypoints, yet cluttered.
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OTHERS FEATURE DESCRIPTORS

With adaptive non-maximal suppression, keypoints are well spread out:

Top 100 keypoints. Top 200 keypoints.
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FEATURE MATCHING

Sample matching results: SURF, nearest neighbors with min. distance.

Some matches are correct, others are not.

Can include other info like color to improve match accuracy.

Generally, no perfect matching results.
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FEATURE MATCHING

• Feature matching methods can provide false matches.

• Manually select good matches.

• Or use robust method to remove false matches:

• True matches are consistent and have small errors.

• False matches are inconsistent and have large errors.

• Nearest neighbor search is computationally expensive.

• Require efficient algorithm, e.g., using k-D Tree.

• k-D Tree is not more efficient than exhaustive search for large dimensionality, e.g., > 20.
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SUMMARY

• Harris corner detector and Tomasi’s algorithm find corner points.

• SIFT keypoint: invariant to scale.

• SIFT descriptors: invariant to scale, orientation, illumination change.

• Variants of SIFT: PCA-SIFT, SURF, GLOH.
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