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LEARNING OBJECTIVES

The student is able to

AIT.U3.E5.PC1 Define CNN and RNN.

AIT.U3.E5.PC2 Understand the differences between CNNs and RNNs.

AIT.U3.E5.PC3 Know the different use cases of CNNs and RNNs.

AIT.U3.E5.PC4 Select the architecture that best fits a specific problem or situation.

AIT.U3.E5.PC5 Implement RNN and CNN with TensorFlow.
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HOW IMAGE RECOGNITION WORKS?

Do you know how deep learning recognizes na object in na image?

Using Convolutional Neural Networks (CNN)

Cat

Bird

Dog
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CONVOLUTIONAL NEURAL NETWORK ( CNN)

Definition

A convolutional neural network (CNN) is ….

• a feed forward type of artificial neural network used in image recognition and processing;

• designed to take advantage of a picture (2D);

• very used in computer vision, specially in image classification;

• excellent in sequent data analysis such as natural language processing (NLP);

• a specific type of ANN that uses perceptrons, a machine learning unit algorithm, for supervised learning, to

analyze data
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CONVOLUTIONAL NEURAL NETWORK

Convolution Operation is the basis of CNN

In CNN, every image is represented in the form of arrays of pixel values

0 0 1 1 0 0

0 1 0 0 1 0

0 0 1 1 0 0

0 1 0 0 1 0

0 0 1 1 0 0

Real Image of the digit 8
Digit 8 represented in the
form of na array

Digit 8 represented in the
form of pixels (0/1)
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LAYERS IN CONVOLUTIONAL NEURAL NETWORK

CNN

ReLu LayerConvolution Layer

Fully Connected LayerPooling Layer
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CONVOLUTION LAYER

STEP1: Submit the image into a convolutional Layer, applying filters.

Sliding the filter matrix over the image and computing the doi product to detec patterns

Considering 5 * 5 image:
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Image Pixels Filter Convolved Feature



8

RELU LAYER

STEP 2: Once the feature maps are extracted, move the feature into a ReLu Layer (Normalization Layer).

1. Performs element wise operatios;

2. Sets all negative pixels to 0;

3. Introduces non-linearity to the network;

4. The output is a rectified feature map;

4 3 2

2 4 3

2 3 4
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POOLING LAYER

STEP 3: The rectified feature map goes trough a pooling layer. Pooling is a down-sampling operation that
reduces the dimention of the feature map.

Polling Layer uses different filters to identify different parts of na image (edges, corners, body, eyes, ...)

4 3 2

2 4 3

2 3 4

Rectified Feature Map

4 4

4 4
Max Pooling with 2x2 

filters stride 2
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FLATTENING

STEP 4: Flattening is the process of conversion of all the resultant 2D arrays from pooled feature map into a 

single continuous linear vector.

4 4

4 4

Pooled Feature Map

Flattening
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FULLY CONNECTED LAYER

STEP 5 : The flattened matrix from the pooing layer is fed as input to the Fully Connected Layer to classify
the image

Cat

Bird

Dog
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SUMMARY



13

DISADVANTAGES OF CNN

Advantages

01

02

03 Weight sharing.

Very High accuracy in image recognition problems.

Automatically detects the important features without any human supervision.
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ADVANTAGES OF CNN

Disadvantages

01

02

03 Lots of training data is required.

Do not encode the position and orientation of object.

Lack of ability to be spatially invariant to the input data.
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CNN USE CASES

Decoding Facial Recognition Document Analysis Understanding Climate
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CNN USE CASES

Advertising Autonomous carsRobots that can mimic human behavior
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RNN USE CASES

Project DocumentationCustomer support Chatbots
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RECURRENT NEURAL NETWORK ( RNN)

Recurrent Neural Network is ...

• a type of neural network that contains loops so that information can be stored in the network;

• commonly used in speech recognition and natural language processing (NLP);

• is a class of artificial neural networks in which the connections between nodes form a directed

graph over a time sequence;

Definition
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TYPES OF RECURENT NEURAL NETWORK

ONE TO ONE

This type or RNN is known as the Vanila 

Neural Network. 

It is mostly used for regular machine 

learning problems

Single Output

Single Input
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ONE TO MANY 

RNN, one to many type, generates 

sequence of outputs. 

It is mostly used in Image Captioning

Multiple Outputs

Single Input
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MANY TO ONE

This type or RNN starts with a sequence 

of inputs.

It is very used in the analysis of

sentiment. 

Single Output

Multiple Inputs
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MANY TO MANY 

Many to Many type or RNN takes a 

sequence of inputs and generates 

another sequence of outputs. It is very 

used in Machine Translation

Multiple Inputs

Multiple Outputs
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DISADVANTAGES OF CNN

Advantages

01

02

Remembers each and every information through time. It is useful in time series prediction
only because of the feature to remember previous inputs as well. 

Can be used with convolutional layers to extend the effective pixel neighborhood.
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ADVANTAGES OF CNN

Disadvantages

01

02

03 It cannot process very long sequences if using tanh or relu as an activation function.

Gradient vanishing and exploding problems.

Training an RNN is a very difficult task.
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CNN VS RNN

CNN RNN

It is suitable for spatial data such as images. It is s suitable for temporal data( sequential data).

More powerfull than RNN Includes less feature compatibility than CNN.

Takes fixed size inputs and generates fixed size outputs. Can handle arbitrary input/output lengths.

Feed-forward artificial neural network with variations of
multilayer perceptrons designed to use minimal amounts of
preprocessing.

Unlike feed-forward neural networks can use their internal
memory to process arbitrary sequences of inputs.

Uses connectivity pattern between the neurons. 
Uses time-series information, what a user spoke last will
impact what he/she will speak next.

Ideal for images and video processing. Ideal for text and speech analysis.



26

RNN USE CASES

Search Engines Speech-to-text applications eCommerce
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RNN USE CASES

Market ResearchStock Price Forecasting Ad Fraud, Spam Detection, Bot Detection
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TENSORFLOW

• Introduced by Google
• Released on February 2017
• Allows interface and training entirely on browser
• Developed in C++
• Requires 2 hardware components : CPU (Central Processing Unit) and GPU (Graphics Processing Unit)

TENSOR

Multi-Dimensional Array Graph of Operations

FLOW
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WHAT ARE TENSORS?

Tensors can be vizualized as:

Scalar Vectors Matrix ND-tensors

Number Simple array 2D array Multidimensional array, 
more than 2D

18

2

18

2

-4

7

[18 1] [0.5 1]

[7 13]

[0 0]

[-4 14]

[2 –0.7]
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CONVOLUTIONAL NEURAL NETWORKS :  TENSORFLOW

YOU WILL NEED A DATASET OF IMAGES
Suggestion: https://arxiv.org/abs/1708.07747 (Novel Image Dataset for ML Algorithms)

STEP 1: Import the require modules

STEP 2: Import the data

STEP 3: Analyse the data

STEP 4: Data Preprocessing

STEP 5: Define the Deep Learning Network

STEP 6: Compile the model

STEP 7: Fit the model

STEP 8: Evaluate the model

STEP 9: Make Predictions

https://arxiv.org/abs/1708.07747
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CONVOLUTIONAL NEURAL NETWORKS :  TENSORFLOW

STEP 1: Import the require modules

STEP 2: Import the data

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os

data = input_data.read_data_sets('directory',one_hot=True,source_url='')

one_hot=True -> converts the categorical class labels to binary vectors.

STEP 3: Analyse the data

Analyse what the images in the dataset look like: Do they need rescale? Are they in the require shape?
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CONVOLUTIONAL NEURAL NETWORKS :  TENSORFLOW

STEP 4: Data Preprocessing

data.train.images[0][200:]
np.max(data.train.images[0])
np.min(data.train.images[0])

1. Vizualize images to confirm that they are between 0 and 1

2. Reshape your data so that is Tensorflow expected input shape for its Deep Learning Model

train_X = data.train.images.reshape(-1, 28, 28, 1) 
test_X = data.test.images.reshape(-1,28,28,1) 
train_X.shape, test_X.shape

(<number of images>, <image x_dim>, <image y_dim>, <number of channels>)

((55000, 28, 28, 1), (10000, 28, 28, 1))

3. Define the train and test set

train_y = data.train.labels 
test_y = data.test.labels
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CONVOLUTIONAL NEURAL NETWORKS :  TENSORFLOW

training_iters = 10
learning_rate = 0.001
batch_size = 128

1. Define Training Interations: training_iters (number of times you train the network), learning_iters
(factor that is multiplied with the weights), batch_size (number of images that will go through the
network each time. Should be a power of 2)

STEP 5: Define the Deep Learning Network

2. Define Network parameters: number of inputs, number of classes (number of class labels)

n_input = 28
n_classes = 10

3. Define Placeholders

x = tf.placeholder("float", [None, 28,28,1]) 
y = tf.placeholder("float", [None, n_classes])
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CONVOLUTIONAL NEURAL NETWORKS :  TENSORFLOW

4. Create the Layers (It should always be defined the convolution and max-pooling functions)

•conv2d() function has 4 arguments: input x, weights W, bias b, and strides.
•max-pooling function has the input x and a kernel size k.

def conv2d(x, W, b, strides=1):
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b) return tf.nn.relu(x) 
def maxpool2d(x, k=2): 
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],padding='SAME')

5. Define Weights and biases variables

weights = { 
'wc1': tf.get_variable('W0', shape=(3,3,1,32),initializer=tf.contrib.layers.xavier_initializer()),
…,
'out': tf.get_variable('W6', shape=(128,n_classes),initializer=tf.contrib.layers.xavier_initializer()), } 

biases = {
'bc1': tf.get_variable('B0', shape=(32), initializer=tf.contrib.layers.xavier_initializer()),
...,
'out': tf.get_variable('B4', shape=(10), initializer=tf.contrib.layers.xavier_initializer()), }
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RECURRENT NEURAL NETWORKS: TENSORFLOW

YOU WILL NEED A DATASET

STEP 1: Import the require modules

STEP 2: Import/Generate the data

STEP 3: Define the placeholder for the data

STEP 4: Define the Recurrent Network

STEP 5: Compile the model

STEP 6: Calculate the loss

STEP 7: Vizualize the training

STEP 8: Training and Testing
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SUMMARY
PRACTICE RECOMMENDATIONS

• Deep learning recognizes an object in an image using CNN

• A convolutional neural network (CNN) as many equivalent definitions. But the most common one is that

CNN is a feed forward type of artificial neural network used in image recognition and processing

• In CNN, every image is represented in the form of arrays of pixel values

• There are 4 layer in a CNN: Convolution, ReLu, Pooling and Fully Connected

• CNN can be used in: Face Recognition, Document Analysis, Marketing, Autonomous Cars, among others

• RNN is a type of neural network that contains loops so that information can be stored in the network

• There are 4 types of RNN: one to one, one to many, many to one, many to many

• RNN can be used in: Search Engines, e-Commerce, Stock Price Forecasting, among others

• Tensorflow is the most used tool that allows interface and training entirely on browser in order to

implement a CNN or RNN
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